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ABSTRACT

For many target and anomaly detection algorithms, a key step is the estimation of a centroid (relatively easy)
and a covariance matrix (somewhat harder) that characterize the background clutter. For a background that
can be modeled as a multivariate Gaussian, the centroid and covariance lead to an explicit probability density
function that can be used in likelihood ratio tests for optimal detection statistics. But ellipsoidal contours can
characterize a much larger class of multivariate density function, and the ellipsoids that characterize the outer
periphery of the distribution are most appropriate for detection in the low false alarm rate regime. Traditionally
the sample mean and sample covariance are used to estimate ellipsoid location and shape, but these quantities
are confounded both by large lever-arm outliers and non-Gaussian distributions within the ellipsoid of interest.

This paper compares a variety of centroid and covariance estimation schemes with the aim of characterizing
the periphery of the background distribution. In particular, we will consider a robust variant of the Khachiyan
algorithm for minimum-volume enclosing ellipsoid. The performance of these different approaches is evaluated
on multispectral and hyperspectral remote sensing imagery using coverage plots of ellipsoid volume versus false
alarm rate.

Keywords: Anomaly Detection, Multispectral Imagery, Hyperspectral Imagery, Background Estimation, Low
False Alarm Rate

1. INTRODUCTION

Characterization of the background is a key consideration in the detection of targets and anomalies in multispec-
tral and hyperspectral imagery.! The Gaussian distribution is often the first choice for that characterization,
and although conceptually simple, it can be surprisingly effective.?

For background data that can be modeled with a d-dimensional multivariate Gaussian, the distribution is
specified by the mean p € R? and covariance C € R%*?, and the natural choice for anomaly detection is the
Mahalanobis distance:3

Alx) = (x— )" C7 (x — p) (1)

This is sometimes called the Global RX detector, as it is a special cases of a local approach to anomaly detection
developed by Reed, Yu, and Stocker.*®

One way in which this choice of anomaly detector is optimal is that it has the smallest volume for a given
false alarm rate. The contours of the Gaussian are ellipsoidal, and in particular the ellipsoid specified by
(x — uw)TC~1(x — p) = r encloses a volume given by
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A simple generalization of the Gaussian is given by elliptically-contoured (EC) distributions, which preserves
many of its properties, but provides a more realistic model for the tail of the distribution. The effectiveness of
EC distributions for hyperspectral data has been demonstrated in a variety of situations.® Two very important
properties of the Gaussian that are inherited by more general EC distributions, are: that Eq. (1) is an optimal
choice of anomaly detector, and Eq. (2) expresses the volume enclosed by contours.

One can certainly consider more general distributions (e.g., multimodal Gaussians or kernel-based models),
but the focus here is on how to estimate from data the ellipsoids that characterize elliptically-contoured distri-
butions, and on how that affects anomaly detection performance. In particular, we will consider two aspects of
the estimation problem: one is robustness against overfitting and the other is the importance of estimating the
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distribution on its periphery,” where one finds the boundary between normal and anomalous. To this end, we
will compare a robust scheme (MCD) and a periphery-characterizing scheme (MVEE), and will develop a new
algorithm (MVEE-h) that enables us to add “a little bit of robustness” to MVEE. Evaluating these schemes on
several multispectral and hyperspectral datasets suggests that (at least for the global ellipsoidal characterization
that we consider here), characterizing the periphery is more important than achieving robustness.

Although we do not consider more general target detection problems here, we remark that the boundary that
separates target from clutter is also on the periphery of the clutter distribution.

2. SAMPLE COVARIANCE MATRIX

Define x,, = [2,,(1),2,(2),...,2,(d)]T as input spectral signals consisting of d spectral bands and let X be a
d x N matrix of the N background pixels. Each observed spectral pixel is represented as a column in the sample
matrix X

X:[Xl,Xg,...,XN] (3)

From these data pixels, we define the sample mean p = (1/N) Zfil x;, and the mean-subtracted sample covari-
ance matrix C' = (1/N) >, v (% — )T (% — ).

Although the sample covariance matrix is the best estimator (in the sense of maximum likelihood) for the
covariance, per se, we observe that we really need to estimate the inverse covariance in order to compute
Mahalanobis distance with Eq. (1). The best estimator of the inverse covariance matrix is not necessarily the
inverse of the best estimator of the covariance; in particular, an over-fit estimate leads to under-estimates of the
smallest eigenvalues of the covariance, and matrix inversion magnifies these small values. To reduce the effects of
over-fitting, a wide variety of regularization schemes have been proposed.'® 22 For the discussion here, however,
we will presume that we have enough data (N > d) to avoid overfitting, and instead worry about the effects of
non-Gaussian distributions, heavy tails, and outliers.

3. MINIMUM COVARIANCE DETERMINANT (MCD)

Campbell** makes the case for “robust” covariance estimation, arguing that traditional statistics (such as the
sample covariance matrix) give too much leverage to points far from the central core of the data. Such points
might be outliers (not truly belonging to the distribution whose covariance is being estimated), but even if
they are sampled from the distribution of interest, their distance from the centroid gives them undue influence
in estimating that distribution. Baesner?® also argues that removing outliers in the estimation of background
model leads to a better anomaly detector.

124

Rousseeuw?% 28 developed the minimum covariance determinant (MCD) algorithm as a specific robust covari-
ance estimator that seeks the sample covariance for a subset of points (h out of N) that constitute the central
core data. Since there are, a priori, a combinatorically large number of such subsets (N choose k), the algorithm
employs a heuristic strategy involving multiple restarts to identify good choices for the core data points, and is
based on the premise that small volumes are best, although it does not seek to optimize volume directly.

As the name suggests, what MCD attempts to optimize is the determinant of the sample covariance matrix.
Strictly speaking, this minimization is an NP-hard problem, but the MCD algorithm does a good job of finding
a good (even if not the ultimately optimal) solution.

The pseudocode in Algorithm 1 describes MCD in more detail, though the “fast MCD” described in Ref. [28]
employs some further speed-ups that are not described here. A key component of the MCD algorithm is the
CSTEP, which iterates from one subset of h points to another subset. A theorem is proved that a CSTEP iteration
can never increase the determinant; a sequence of CSTEP iterations inevitably leads to a minimum, albeit a local
minimum.

Consider a dataset X = {x1,...,xn} of d-variate observations. Let H C {1,..., N} with h < N elements.
Put = (1/h) ¥ ;e xi and C = (1/h) >, (i — p)(x; — p)T. If |C] # 0, define the relative distances

o= (x; — ) O (% — ) fori=1,...,N (4)
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Now take H' to be the set of indices of the h smallest distances; thus {r; : i € H'} = {rzpj,...,7z[n}, where w
indicates the permutation of indices that sorts the distances: rq1) < 712 < -+ < ryn). Re-compute p' and C’
based on the points in H' instead of H. Then the theorem asserts that the determinant of the new covariance
will not increase; that is:

'l <cl, ()

with equality if and only if g’ = p and ¢’ = C. The theorem assumes |C| # 0. If |C| = 0, the minimum volume
will have already been achieved, and there is no need for further iterations.?

Consecutive iterations of CSTEP produce a nonnegative, monotonically decreasing sequence of determinants.
Because there are finitely many h-subsets, this sequence of determinants must converge in a bounded number
of steps. The stopping criteria for CSTEP occurs when the resulting determinant reaches zero or is equal to the
previous iteration’s determinant. This does not guarantee a global minimum, so the CSTEP iteration is performed
multiple times, each time using a different randomly drawn subset as an initial condition. To more effectively
explore the diversity of possible solutions, the initial subset is very small, with just enough points (typically d+1
points) to span the d dimensional space, so that the initial determinant is nonzero. CSTEP is applied to each
subset until convergence, and only the solution with the lowest determinant is kept.

Algorithm 1 Minimum Covariance Determinant (MCD)

Require: Data set X = {x1,...,xx} with x; € R?
Require: T,k > T is number of trials; h < N is size of subset
1: fort=1,...,T trials do

2: J < random draw of d + 1 points from X

3: Compute p + ave(J) and C < cov(J)

4: while |C] =0 do > in case points in J don’t span space
5: J < J U {random draw of one sample from X} > add new points until they do
6: Recompute p < ave(J) and C < cov(J)

7 end while

8: repeat

9: w,C < CsSTEP(X, s, C, h) > |C| gets smaller with each iteration
10: until convergence > Convergence when |C| reaches zero or no longer decreases
11: Set p, < p and Cy + C > Save p, C for each trial
12: end for

13: ¢, = argmin, |Cy| > Identify trial whose covariance matriz Cy has minimum determinant

Output: pu,; , Cy,

14: procedure CSTEP(X, u,C, h)
15: fort=1,...,N do

16: Compute distance r; < (x; — )T C~(x; — p) > Mahalanobis distance to centroid
17: end for

18: 7« argsort(ry,...,TN) > Ensures rop) < -+ < TriN)
19: Create set: H < {Xz[1], -, Xn[n] } > H is “core” subset of X that excludes outlying points
20: Compute p' < ave(H) and C’ < cov(H)

21: return p', C’ > A theorem ensures |C'| < |C|

22: end procedure

4. MINIMUM VOLUME ENCLOSING ELLIPSOID (MVEE)

The MCD algorithm finds a subset of points such that the volume of the ellipsoid defined by the sample covariance
of those points is minimized, whereas the MVEE algorithm more directly seeks the ellipsoid of minimum volume
that encloses the points.
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0 Figure 1. Three iterations of the MVEE algorithm. At the first itera-
20 tion (a), the ellipsoid is aligned with the sample covariance, and scaled
2 to enclose all the data points. The point with the largest Mahalanobis
distance is circled. The weight is increased on that point, and a new
N 10 weighted sample covariance is computed. In the second iteration (b), the
0 ellipsoid is aligned with the new weighted sample covariance and scaled
-10 to enclose all the data points, the last of which is circled. In the third
-20 iteration (c), an ellipsoid aligned with the new covariance matrix is again
30 scaled to enclose all the points. Comparing the ellipsoids in (d), we see
that their volume decreases with each iteration.
-40 20 0 20 40
X1
Given a set of points: {x;,...,xy}, with x; € R?, we seek a centroid p, and a symmetric positive-definite

matrix C' such that all points satisfy (x; — pu)TC~1(x; — ) < 1. We observe that the set £ = {x : (x —
w)TC~(x — p) < 1} is a d-dimensional ellipsoid whose volume is given by Eq. (2) with r = 1.

Thus, to minimize the volume of F, we need to minimize the determinant of the covariance.

miclg |C| subject to constraints:(x; — p)TC 1 (x; — p) < 1 for all i (6)
1,

This problem, the minimum volume enclosing ellipsoid (MVEE), is a convex optimization problem [29, p. 401],
and one of the classic solutions is given by Khachiyan’s algorithm.3°

4.1 Khachiyan Algorithm

In Khachiyan’s algorithm,3® weights are assigned to all the points in the data, and p and C are given by the
weighted sample mean and covariance. The covariance produced in Khachiyan’s algorithm is scaled by d and the
weights are re-adjusted until (x; — u)TC~1(x; — ) < 1 for all 4. This is illustrated in Figure 1, and described
with pseudocode in Algorithm 2.

In Appendix A, we derive the fact that the average Mahalanobis distance is d. Since the average r; is d, it
follows that the largest 7; (which we denote 7;) is at least that large: that is, r; = max(r;) > average(r;) = d,
with equality holding only if r; = d for all 4 for which u; > 0. The Khachiyan Algorithm exploits this property
by iteratively seeking the sample point with the largest Mahalanobis distance and increasing the weight u; on
that sample. This increase is by an amount 3, whose value is derived in Appendix B. The increase is just enough
so that at the next iteration, r; = d.

At each iteration, the weights are adjusted so that the largest Mahalanobis distance becomes equal to the
(weighted) average Mahalanobis distance. This will generally cause some other Mahalanobis distances to exceed
the average, and the largest one of those samples is targeted for the next iteration. After many iterations, the
largest Mahalanobis distance will be only slightly larger than d. Furthermore, as MVEE approaches its limit,
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most of the u;’s will approach zero. The points with nonzero values are the “support vectors,” or points on the
periphery of the data or very close to the surface of the enclosing ellipsoid.

Although the basic Khachiyan Algorithm, as described in Algorithm 2, is adequate to the task of identifying
the MVEE for hyperspectral data, a number of speed-ups have been suggested,®' 32 and some of these are
included in the more detailed pseudocode shown in Algorithm 3. For instance, Algorithm 3 appends a row of
ones to the original data; this is a technique that enables the computation of g and C with a single matrix
operation.

5. ROBUST MINIMUM VOLUME ENCLOSING ELLIPSOID (MVEE-H)

We remark that the sensitivity of the sample covariance estimator to outliers that concerned Campbell?* and
Rousseeuw?5 28 is even more pronounced in the MVEE algorithm, which depends only on a small number,
typically O(d), of the most outlying points. In fact, the standard MVEE can be described as an “anti-robust”
estimator.? In this section, we propose a variant of the MVEE algorithm which is more robust to outliers than
MVEE.

Table 1. Four covariance estimators and how they are related

All data samples  Subset of h samples
Sample covariance matrix | Mahalanobis/RX MCD
Minimum volume matrix MVEE MVEE-h

When fitting hyperspectral imaging data, especially those with anomalous points, EC distributions based
on centroid and covariance estimations of the whole data may not work so well. Lever-arm outliers and non-
Gaussian distributions are poorly represented through ellipsoidal descriptions. Rather, if the estimations are
calculated using a subset of the data that excludes a few of the most outlying points, the algorithm can better
fit around the Gaussian-like center.

The robust minimum volume enclosing ellipsoid (MVEE-h), described in pseudocode in Algorithm 4, utilizes
the same algorithm as MVEE while incorporating MCD’s p and C' subset method by excluding the N — h most
outlying points from the next computation of g and C'. Much like MCD’s relation to RX, MVEE-h aims to
provide a more robust method than MVEE of finding a well-fitting model. A key difference between the relation
of RX and MCD to MVEE and MVEE-h is the multiple trials T" of small subsets J that MCD uses, whereas
our implementation of MVEE-h employs a single trial, and begins with the full dataset. Table 1 shows the
relation between the different covariance estimators. The updated p and C' are applied to all of the data, and
the algorithm once again reduces the data by N — h points. This process continues until the tolerance is met.

Algorithm 2 Minimum Volume Enclosing Ellipsoid (MVEE)
Require: Data set X = {x;,...,xy} with x; € R fori=1,...,N

1: Initialize weights: u; < % for all ¢ > Begin with equal weights; note Y, u; =1
2: repeat
3: TR & > weighted sample mean
4: C+ > uilxi —p)(x; — p)T > weighted sample covariance
5: i+ (x; — p)TC7 1 (x; — p) for all i > Mahalanobis distances
6: J < argmax; 7; > Identify most outlying point (largest Mahalanobis distance)
7 Compute 8« (r; —d)/((d+ 1)r;) > B> 0 implies r; > 0 implies (x; — p)TC71(x; — p) > d
> which implies that x; is not enclosed by ellipsoid (u,C)
8: Update weights: u; < (1 — )u; + ;5 for all 4 > All weights u are reduced, except u; is increased
9: until convergence > Convergence when 3 is small enough
10: p < Zz ;X5
11: C+dx Y ui(xi — p)(x; — )7 > Scale by d so that (x — p)TC1(x—p) <1

Output: p, C
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Algorithm 3 Minimum Volume Enclosing Ellipsoid (MVEE) — vectorized implementation

Require: Data set X = [x1,...,xy]| withx; e R fori=1,...,N > X € RN s ad x N matriz
1: Initialize weights u < ones(1, N)/N >u € RY is a vector
2: Append a row of ones to data, X, < [X;ones(1, N)] € R(+D*N > Simplifies linear algebra

> Allows p,C to be computed together
3: repeat
4 C, + X, diag(u) XT > C, € REHDX(EHD) combines covariance and mean
5: r, = diag(XI'C;1X,) >ry € RN is a vector of Mahalanobis-like distances
> In fact, vy =1+ 1, where r is vector of actual Mahalanobis distances
6: Jj < argmax(ry) > Index of mazimum distance
7 k< 1y(4) > k — 1 is mazimum Mahalanobis distance
8: Compute f + (k—1—=d)/((d+1)(k — 1))
9: Update weights: u < (1 — 8)u+ Se; > Vector e; has components e;(i) = d;;

10: until convergence

11: p+— Xu > weighted sample mean

12: O« d x (X diag(u) X7 — puT) > weighted sample covariance, scaled by d

Output: u, C
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Algorithm 4 Robust Minimum Volume Enclosing Ellipsoid (MVEE-h)
Require: Data set X = {x;,...,xy} withx; e R fori=1,...,N

Require: h > h < N is size of subset

1: Initialize weights: u; < % for all 4 > Begin with equal weights; note », u; =1
2: repeat
3 TR ¥ > weighted sample mean
4 O ui(x — p)(xi — p)"
5: i+ (x; — )T O~ (x; — p) for all i > Mahalanobis distances
6: 7+ argsort(ry,...,TN) > Ensures rop) < -+ < TriN)
7 j=mlh] > Most outlying point, except for the last few N — h outliers
8: Compute § < (r; —d)/((d+ 1)r;)

9: Update weights: u; < (1 — B)u; + 6,5 for all

10: until convergence

1 p— >0, wiXg > weighted sample mean
12: C+dx Y ui(xi — p)(x; — )T > weighted sample covariance, scaled by d
Output: p, C

6. GAUSSIAN, NON-GAUSSIAN (G/NG)

While hyperspectral data is not typically Gaussian, there is a sense that it can be more Gaussian in “some
directions,” particularly the directions with lower variance.?* 36 This suggests that the distribution can be
modeled as a hybrid of Gaussian in the “more Gaussian” dimensions, and non-Gaussian in the (typically larger-
variance) directions. Suggested non-Gaussian models in this context include a simplex-based distribution®” or a
histogram-based distribution.3®

Piggybacking this idea, the Gaussian, non-Gaussian (G/NG) method utilizes the superior estimation abilities
of MVEE in the high-variance directions with the efficiency of the RX algorithm in the low-variance directions,
to create a hybrid method that is fast and fits the data well. In high dimensions, MVEE’s iteration process can
become unwieldy. Rather than performing MVEE on all of the data’s dimensions, G/NG proposes to use MVEE
on the k-dimensions with highest variance, and RX on the rest. This technique does as good a job as MVEE
but with a significant decrease in run time (See Fig. 3).

7. NUMERICAL EXPERIMENTS

The efficacy of each algorithm is determined by relating the false alarm rate (FAR) with its corresponding
ellipsoid volume. FAR is the fraction of data points outside of the defined ellipsoid and is considered a “false
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Figure 3. Coverage plots (volume vs. false alarm rate) for three different ellipsoid generation algorithms: MVEE, RX, and
G/NG. The models are taken from the 200-channel “Indian Pines” data set. At all dimensions d, MVEE produces better
models, however with higher dimensions and larger data sets, MVEE can become unwieldy. G/NG offers a solution by
performing MVEE on the k most variant dimensions, and RX on the remainder. Doing so yields results competitive with
MVEE, while reducing overall runtime.
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Figure 4. 2D representation, taken from the Florida data test set, of the different ellipsoids and how they behave at
different FARs. These plots show that the choice of outliers is important for finding the smallest ellipsoid. (a) Ellipses
enclose all of the data. MVEE does particularly well to fit the data as it does not have excessive white space. (b) One
percent of the data is omitted. The designated h was at 99% of the data, so it is intuitive that MVEE-h seems to perform
really well compared to the other algorithms. (c) At 5 percent data omission, MVEE maintains a fairly steady volume,
while RX, MCD, and G/NG get noticeably smaller since they are centered around the main cluster. Recall that the goal
is to find an estimator that fits the data well at low false alarm rates, so even though MCD, RX, and MVEE-h do well at
95% enclosure, MVEE outperforms the others at very low data omissions.

alarm” since data conformity is assumed and objects outside of the ellipsoid are treated as anomalous. An
ellipsoid with smaller volumes at low FARs is the desired result.

To evaluate the different centroid and covariance estimation schemes, we used various multispectral and
hyperspectral remote sensing imagery and performed the different algorithms on each set. The data ranged
from 8 to 224 spectral channels. For each experiment, we randomly pulled 10,000 points for our training set
and used that as our basis to create an ellipsoidal description. We then test the model on the remaining data,
creating a series of multi-dimensional enclosing ellipsoids. Figure 4 illustrates the nature of each algorithm in a
two-dimensional setting. Then in Figure 5, we have numerous FAR vs. log volume curves where we can actively
see which methods do well in the low FAR region.

The best in-sample performance (lowest volume at low FAR) is observed to be the MVEE algorithm. This
is expected; by definition, MVEE creates the minimum volume ellipsoid that covers all of the data. Somewhat
surprisingly, however, MVEE also outperforms the other methods for the majority of the out-of-sample sets,
suggesting that it mostly avoids overfitting. In general, these results indicate that overfitting is less of an issue
than periphery characterization. In fact, it is only in Figure 5 (¢) where MVEE-h performs better than MVEE
in the out-of-sample set.

The fact that MCD does so poorly, often worse than RX, furthers the indication that robustness was not
the main issue. Indeed, as also observed in Ref. [9], it is the “anti-robust” estimators that do a better job of
characterizing the periphery. What the new MVEE-h estimator offers is a way of introducing “a little robustness”
without giving up the emphasis on periphery.

APPENDIX A. AVERAGE MAHALANOBIS DISTANCE

In this section, we derive the result that for data in R?, the average Mahalanobis distance is d. We will derive
this in the case of weighted data samples, but it applies to the unweighted case as well. Recall the definition of
Mahalanobis distance:

ri = (i — ) C7 (% — p) (7)
For weighted data with weights u; with ) . u; = 1, we have the sample mean and sample covariance given by

n= Z U;Xj, (8)
C= Z ui(xi — p)(xi — )" (9)
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Figure 5. FAR ws. log volume
plots. Solid lines indicate in-sample
data while dashed lines are out-of-
sample. (a) AVIRIS Indian Pines data
(200x21025); (b) HyMap Blindtest
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RX on the rest. The only exception is
the 8-band data which evenly split the
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For unweighted data, u; = 1/N for all i.

The derivation makes use of the Trace operator; this is defined on square matrices as the sum of the diagonal
elements. Thus, the Trace of a scalar is equal to that scalar, and the Trace of the d x d identity matrix is d. We
note that the Trace is a linear operator, and we also use the property that Trace(AB) = Trace(BA).

The average Mahalanobis distance will be given by
N N
Zum = Zui(xi —w)C (xi —p) (10)
i=1 i=1

N
= ZuiTrace ((x; —)"C7 (x; — ) (11)

<
[

I
] =

u;Trace ((x; — p)(x; —p)"C™) (12)

N
= Trace < lz wi(x; — p)(xi — p)"

.
Il

C’l) = Trace (CC™ ') = Trace (I) = d (13)

APPENDIX B. DERIVE g IN KHACHIYAN ALGORITHM

The Khachiyan (MVEE) algorithm is described in Algorithm 3, and includes a step in which weights are updated
using a parameter § that is computed in Line 8 of the pseudocode. In this Appendix, we derive 3.

Let u? indicate the current weight on the ith data sample. Then the current covariance matrix is given by*

Ry = Sjudx;x! (14)

and if j is the index associated with the largest Mahalanobis distance, then the updated weights are given by

Observe the updated weights still sum to one: Yu; = (1 — 8)Sul + 8 = (1 — B) -1+ 8 = 1. The updated
covariance matrix is then given by

R = Yuix;x! = %;((1 = Bul + ﬂdij)XiXZT = (1-B)Zudx;xl) + ﬁxjx;‘-r =({1-8)Ro+ ijx;p (16)

Since x; is the sample with largest Mahalanobis distance in the current iteration, we have that x;fFRa lxj >

d + 1, but we want to change weights such that new R will have the property x! R~!x; = d + 1. To get this
result, we have to utilize the Sherman-Morrison-Woodbury formula defined by

A~labT A1
T\—-1 _ »4—1
So,
r=xTR'x =xT((1 - B)Ro + Bxx")'x = (1 - B) " 'xT(Ry + p xxT)~1x (18)

1-p

*In this derivation, we are referring to the vectorized implementation of MVEE in Algorithm 3. Thus, x; € R**!
corresponds to the ith data sample, augmented with a ‘1’ as the last row. And Ry and R refer to the current and next
iteration of the augmented covariance matrix C, defined in Line 4 of Algorithm 3. One consequence of this is that x; R 'x;
is one plus the Mahalanobis distance; hence its average value is d + 1.
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Let 6 = 2 Now,
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xTR™'x = (14 0)xT(Ro + OxxT)"1x

Ry 'oxx" Ry
=(14+0)x"(Ry' — %)x, (Sherman — Morrison — Woodbury)
2 (19)
=(1+6)(r—=0
L+ 0)(r =075,
1+ 6r Or (1+6)r
= 1 — =
S e i B A
which is our new x” R~!x. Now we would like d + 1 = xT"R™1x = (ﬂgz_r.
(1+0)r r—(d+1)
d+1= 0= ——— 20
+ 146r - rd (20
Recall 0 = £5 = 8= 1%5. So,
r—(d+l) —(d+1 —1-d
ﬂ _ rd r ( + ) _ r (21)

Tl T rdgr—(d+1) (@D -1)

which is the expression used in Line 8 of Algorithm 3.
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